Engineering

Engineering is the application of mathematics, empirical evidence and scientific, economic, social, and practical knowledge in order to invent, innovate, design, build, maintain, research, and improve structures, machines, tools, systems, components, materials, processes and organizations.

The discipline of engineering is extremely broad, and encompasses a range of more specialized fields of engineering, each with a more specific emphasis on particular areas of applied science, technology and types of application.

The term Engineering is derived from the Latin ingenium, meaning “cleverness” and ingeniare, meaning “to contrive, devise”.

History

Relief map of the Citadel of Lille, designed in 1668 by Vauban, the foremost military engineer of his age.
Engineering has existed since ancient times as humans devised fundamental inventions such as the wedge, lever, wheel, and pulley. Each of these inventions is essentially consistent with the modern definition of engineering.

The term engineering is derived from the word engineer, which itself dates back to 1390, when an engine’er (literally, one who operates an engine) originally referred to “a constructor of military engines.” In this context, now obsolete, an “engine” referred to a military machine, i.e., a mechanical contraption used in war (for example, a catapult). Notable examples of the obsolete usage which have survived to the present day are military engineering corps, e.g., the U.S. Army Corps of Engineers.

The word “engine” itself is of even older origin, ultimately deriving from the Latin ingenium (c. 1250), meaning “innate quality, especially mental power, hence a clever invention.”

Later, as the design of civilian structures such as bridges and buildings matured as a technical discipline, the term civil engineering entered the lexicon as a way to distinguish between those specializing in the construction of such non-military projects and those involved in the older discipline of military engineering.

Ancient era

The Ancient Romans built aqueducts to bring a steady supply of clean fresh water to cities and towns in the empire.
The Pharos of Alexandria, the pyramids in Egypt, the Hanging Gardens of Babylon, the Acropolis and the Parthenon in Greece, the Roman aqueducts, Via Appia and the Colosseum, Teotihuacán and the cities and pyramids of the Mayan, Inca and Aztec Empires, the Great Wall of China, the Brihadeeswarar Temple of Thanjavur and Indian Temples, among many others, stand as a testament to the ingenuity and skill of the ancient civil and military engineers.

The earliest civil engineer known by name is Imhotep. As one of the officials of the Pharaoh, Djosèr, he probably designed and supervised the construction of the Pyramid of Djoser (the Step Pyramid) at Saqqara in Egypt around 2630–2611 BC.

Ancient Greece developed machines in both civilian and military domains. The Antikythera mechanism, the first known mechanical computer, and the mechanical inventions of Archimedes are examples of early mechanical engineering. Some of Archimedes’ inventions as well as the Antikythera mechanism required sophisticated knowledge of differential gearing or epicyclic gearing, two key principles in machine theory that helped design the gear trains of the Industrial Revolution, and are still widely used today in diverse fields such as robotics and automotive engineering.

Chinese, Greek, Roman and Hungarian armies employed complex military machines and inventions such as artillery which was developed by the Greeks around the 4th century B.C., the trireme, the ballista and the catapult. In the Middle Ages, the trebuchet was developed.

Renaissance era

The first steam engine was built in 1698 by Thomas Savery.[11] The development of this device gave rise to the Industrial Revolution in the coming decades, allowing for the beginnings of mass production.

With the rise of engineering as a profession in the 18th century, the term became more narrowly applied to fields in which mathematics and science were applied to these ends. Similarly, in addition to military and civil engineering the fields then known as the mechanic arts became incorporated into engineering.

Modern era

The International Space Station represents a modern engineering challenge from many disciplines.
The inventions of Thomas Newcomen and the Scottish engineer James Watt gave rise to modern mechanical engineering. The development of specialized machines and machine tools during the industrial revolution led to the rapid growth of mechanical engineering both in its birthplace Britain and abroad.

Structural engineers investigating NASA’s Mars-bound spacecraft, the Phoenix Mars Lander
John Smeaton was the first self-proclaimed civil engineer, and is often regarded as the “father” of civil engineering. He was an English civil engineer responsible for the design of bridges, canals, harbours and lighthouses. He was also a capable mechanical engineer and an eminent physicist. Smeaton designed the third Eddystone Lighthouse (1755–59) where he pioneered the use of ‘hydraulic lime’ (a form of mortar which will set under water) and developed a technique involving dovetailed blocks of granite in the building of the lighthouse. His lighthouse remained in use until 1877 and was dismantled and partially rebuilt at Plymouth Hoe where it is known as Smeaton’s Tower. He is important in the history, rediscovery of, and development of modern cement, because he identified the compositional requirements needed to obtain “hydraulicity” in lime; work which led ultimately to the invention of Portland cement.

The United States census of 1850 listed the occupation of “engineer” for the first time with a count of 2,000. There were fewer than 50 engineering graduates in the U.S. before 1865. In 1870 there were a dozen U.S. mechanical engineering graduates, with that number increasing to 43 per year in 1875. In 1890 there were 6,000 engineers in civil, mining, mechanical and electrical.

There was no chair of applied mechanism and applied mechanics established at Cambridge until 1875, and no chair of engineering at Oxford until 1907. Germany established technical universities earlier.

The foundations of electrical engineering in the 1800s included the experiments of Alessandro Volta, Michael Faraday, Georg Ohm and others and the invention of the electric telegraph in 1816 and the electric motor in 1872. The theoretical work of James Maxwell (see: Maxwell’s equations) and Heinrich Hertz in the late 19th century gave rise to the field of electronics. The later inventions of the vacuum tube and the transistor further accelerated the development of electronics to such an extent that electrical and electronics engineers currently outnumber their colleagues of any other engineering specialty. Chemical engineering developed in the late nineteenth century. Industrial scale manufacturing demanded new materials and new processes and by 1880 the need for large scale production of chemicals was such that a new industry was created, dedicated to the development and large scale manufacturing of chemicals in new industrial plants. The role of the chemical engineer was the design of these chemical plants and processes.

Uses for Carbide Burrs

Use carbide burrs in air tools such as die grinders, pneumatic rotary tools and high speed engravers. Micro Motors, Pendant Drills, Flexible Shafts, and hobby rotary tools such as a Dremel.

Carbide burrs are widely used for metalworking, tool making, engineering, model engineering, wood carving, jewelry making, welding, chamferring, casting, deburring, grinding, cylinder head porting and sculpting. Carbide burrs are used in the aerospace, automotive, dentistry, stone and metalsmith industries.

What cut should you choose?

Single cut (one flute) carbide burrs have a right handed (up cut) spiral flute. Single cut is used with stainless steel, hardened steel, copper, cast iron and ferrous metals and will remove material quickly with a smooth finish. Use for heavy stock removal, milling, deburring and cleaning.

Heavy removal of material
Milling
Deburring
Cleaning
Creates long chips

Use double cut carbide burrs on ferrous and non ferrous metals, aluminium, soft steel and also for all non-metal materials such as stone, plastics, hard wood and ceramic. This cut has more cutting edges and will remove material faster. Double cut also called Diamond Cut or Cross Cut (2 flutes cut across each other) and will leave a smoother finish than single cut due to producing smaller chips as they cut away the material. Use double cut for medium-light stock removal, deburring, finishing and cleaning. Double cut carbide burrs are most popular and work for most applications.

Medium- light removal of material
Deburring
Fine finishing
Cleaning
Smooth finish
Creates small chips

What RPM speed should you use?

The speed at which you use your carbide burr in your rotary tool will depend on the material you’re using it on and the contour being produced but it’s safe to say you do not need more than 35,000 RPM. If the burs are chipping easily this could be due to the speed being too slow. It’s ideal to start the bur off slow, increasing the speed as you go along. High speeds will prevent clogging in the flutes of your carbide burs.

As with all drill bits and burrs, let the burr do the work and apply only a little pressure, otherwise the cutting edges of the flutes will chip away or become smooth too quickly, reducing the life of your burr.

Our carbide burrs we manufacture are machine ground from a specially chosen grade of carbide. Due to the extreme hardness of the tungsten carbide, they can be used on much more demanding jobs than HSS (High Speed Steel). Carbide Burrs also perform better at higher temperatures than HSS, so you can run them hotter, and for longer. HSS burrs will start to soften at higher temperatures, so carbide is always a better choice for long term performance.

carbide burr die grinder bit

SA-1/2 DIAMOND Cut Carbide Burr
The most abrasive carbide tool we make!

 

tool extension

Need a longer reach for your carbide tool bits?
Try our 4″ and 9″ long tool extensions on sale today!

 

reducing collet

Did you know you can use your 1/8″ Dremel tool bits in your 1/4″ die grinder?
Just use our reducing collet adapter. On sale today!

 

Click here if you are interested in dropshipping our USA made carbide burr tools.

COUPON CODE

Follow Us On Social Media for Special Coupons

FacebookTwitterInstagramYoutube

Return to CarbideBurr.net

Carbide Burrs on 1/4″ ShanksSolid Carbide Burrs1/4″ Carbide Burrs on 1/8″ ShanksLong Shank Carbide BurrsNF Carbide BurrsCarbide Burr SetsEnd MillsAccessories

Order TrackingDropship Carbide Burr ToolsContact UsCut OptionsCoupon CodesPosts